8/16-channel switch values digital transducer manual

CE-AK*2-3*MN*

1 Overview

This product is a high-performance transducer of switch input measurement. The input and output of switch node is complete isolated from power supply and communication port, greatly improving the reliability of the product. It is widely used in various industrial measurement and control system, the switch status signal of the measured is transmitted to the corresponding host through the RS485 bus interface. At the same time it is with 3-way relay output and remote control, available to directly connect a variety of PLC and other equipment with the standard MODBUS protocol.

2 Part Number

CE-A product selection is as follows, in order to make your selected products accurate application, please read carefully.

3 Technical Specifications

```
\(\leq \quad\) Input - Passive contacts (Dry contacts);
\(\leq \quad\) Withstand voltage of the passive contacts \(-\geq 24 \mathrm{VDC}\);
\(\leq \quad\) Output data —_ Values of \(8 / 16\) channels of switching signal input. (" 1 " means "on", " 0 " means "off".);
\(\leq \quad\) Remote control output ----- 3-way relay output (normally closed contact, contact capacity AC250V*5A);
```

http://www.ce-transducer.com
sales@ce-transducer.com

3rd Floor, building 1,Zaimao industrial park, Baoji road, Bantian, Longgang district, Shenzhen City, China Post code: 518049

```
\leq Output interface ——RS-485 bus. 1200m, }\pm15\textrm{KV ESD protection;
\leq Baudrate __ 1200, 2400, 4800, 9600, 19.2k bps;
\leq Refreshing period - }100\textrm{mS}
\leq Isolation voltage ----- 2500V DC;
\leq Quiescent power consumption -_<750 mW (+24V);
\leq Power supply -_ +24V or 220V optional;
\leq Operating temperature -- -20 C C ~+60 C C;
\leq Installation method ----- rail or screw installation.
```


4 Case Style (marked in the figure Unit: mm)

Figure 4.1 CE-AK*2-3*MN2 type product shape

Figure 4.2 CE-AK*2-3*MN2 product installation diagram

Figure 4.3 CE-AK*2-3*MN1 type product shape
Figure 4.4 CE-AK*2-3*MN1 product installation diagram

5 Terminal definition and connection diagrams

Wiring diagram of MN1 case product is shown in Figure 5.1, 5.2;

Figure 5.1, the wiring diagram of AC power supply of CE-AK22-34MN1 16-channel switch value.
Figure 5.2, the wiring diagram of AC power supply of CE-AK12-39MN1 16-channel switch value.
Wiring reference diagram of MN2 case product is shown in Figure 5.3;

Figure 5.2 , the wiring diagram of CE-AK22-39MN2 16-channel product (220 V power supply)

6 MODBUS communication protocol of single-phase digital electrical transducer

1 Format of message

(1)Function code 03 H --- to read the contents of registers from the slave equipment

The message from the master equipment:

Address of the slave equipment	$(01 \mathrm{H}-\mathrm{FFH}$	1byte $)$
Function code	$(03 \mathrm{H}$	1byte $)$
Address of the first register		(2bytes)
Quantity of registers		(2bytes)
CRC code	(2bytes)	

The correct responded message from the slave equipment

Address of the slave equipment	$(01 \mathrm{H}-\mathrm{FFH}$	1 byte $)$
Function code	$(03 \mathrm{H}$	1 byte $)$
Byte count	$\left(2 \mathrm{xN}^{*}\right.$	1 byte $)$
Data section		$\left(\mathrm{N}^{*} \times 2\right.$ bytes $)$
CRC code	$(2$ bytes $)$	

(2) Function code $10 \mathrm{H}--$-to set data of registers of the slave equipment

The message from the master equipment

Address of the slave equipment	$(01 \mathrm{H}-\mathrm{FFH}$	1byte $)$

http://www.ce-transducer.com
sales@ce-transducer.com

3rd Floor, building 1,Zaimao industrial park, Baoji road, Bantian, Longgang district, Shenzhen City, China Post code: 518049

Function code	$(10 \mathrm{H}$	1byte $)$
Address of the first register		(2bytes)
Quantity of registers		(2bytes)
Byte count	$\left(2 \mathrm{xN}^{*}\right.$	1 byte $)$
The data written to the register		$\left(2 \times \mathrm{N}^{*}\right)$
CRC code		(2bytes)

The correct responded message from the slave equipment

Address of the slave equipment	$(01 \mathrm{H}-\mathrm{FFH}$	1byte)
Function code	$(10 \mathrm{H}$	1byte $)$
Address of the first register		(2bytes)
Quantity of registers		(2bytes)
CRC code	(2bytes)	

Note: 1 For all address of registers, quantity of registers and contents of registers (data), the high order byte is before their low order byte. But the low order byte of CRC code is before its high order byte.

2 the length of the register is 16bits (2 bytes).

2Format of commands and explanation of the registers

All of the following commands are illustrated with an address is 01 and baudrate is 06 (9600 bps);
2.1 The command "To read the data of all switching value inputs":

A: Send command

| Address of the
 slave equipment | Function
 code | Address of the first
 register | | Quantity of
 registers | | CRC-L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | CRC-H

Note: The values data will be stored in the first register 0000 H , the high order byte is before their low order byte.
B: Return data

Address of the slave equipment	Function code	Data count	Data		CRC-L
01 H	03 H	02 H	Values data H	Values data L	Check code
Check code					

Note: "Values data" mean 8 bits of switching values. The most significant bit is the datum of switching value input 8 and LSB is the datum of switching value input 1 .
2.2 The command "To read the data of transducer's name and configuration"

A: Definition table of transducer's name, address and baud rate register

Address of register $(H e x)$	Content of registers	Quantity of registers	Status of registers	Range of data
0020 H	Address and baudrate	1	Read/write	Address(0-256) Baudrate(03-07)
0021 H	Transducer's name	2	Read only	Configured by product type $(4$ bytes)
0023 H	Parity check	1	Read/write	0: no check, 1: odd check, 2: even parity; 3: 2 stop bits

Description: MN1 case products without parity mode;
B: Send command

Address of the slave equipment	Function code	Address of the first register	Quantity of registers	CRC-L	CRC-H

http://www.ce-transducer.com sales@ce-transducer.com

3rd Floor, building 1,Zaimao industrial park, Baoji road, Bantian, Longgang district, Shenzhen City, China Post code: 518049

SHENZHEN SENSOR ELECTRONC TECHOLOGY CO, LTD.

B: Return data

Address of the slave equipment	Function code	Data count	Data			CRC-L	CRC-H
01H	03H	06H	Address core	Baudrat e core	Model's name (4bytes)	Check code	Check code

2.3 The command "To modify the address and baudrate":

A: Send command: (Change the address from 01 to 02 ; set new baudrate to 9600 bps <code 06 >)

Address of the slave equipment	Function code	Address of the first register		Quantity of registers		Data bytes count	Data written to register		CRC-L	CRC-H
01H	10H	00H	20 H	00H	01H	02H	02H	06H	20H	52H

Note: The data of new address and baudrate will be stored in the first register 0020 H , the high order byte is address data and the low order byte is baudrate code. Codes for baudrate setting: 03-1200bps, 04-2400bps, 05-4800bps, 06-9600 bps, 07-19200 bps.

B: Return data

| Address of the
 slave equipment | Function
 code | Address of the first
 register | | Quantity of
 registers | | CRC-L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | CRC-H

3.4 The command "To control relay output" (MN1-case products do not have this function):

A: Register address table of switch value output
Use function code 05 H of the Modbus to access the contents of the following address table, where ON means the relay is closed and OFF means the relay is released.

Address of the register (Hex)	Number of relays	Read/write	Function code	Data range
0001 H	K1	W	05	FF00H $=\mathrm{ON}, 0000 \mathrm{H}=\mathrm{OFF}$
0002 H	K2	W	05	FF00H=ON, $0000 \mathrm{H}=\mathrm{OFF}$
0003 H	K3	W	05	FF00H $=\mathrm{ON}, 0000 \mathrm{H}=\mathrm{OFF}$

B: Send command (control pull of K1 relay)

| Address of the
 slave equipment | Function
 code | Address of the first
 register | | | Data written to register | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | CRC-L | CRC-H |
| :---: |
| 01 H |

C: Return data

Address of the slave equipment	Function code	Address of the first register	Data written to register	CRC-L	CRC-H	
01 H	05 H	00 H	01 H	FFH	00 H	DDH

The way to control other relays Ibid.

3.5 The command "To read the state of relay output (DO)" (MN1-case products do not have this function):;

A: Use function code 01 H of the Modbus to access the contents of the following address table, thereinto $1=0 \mathrm{~N}, 0=\mathrm{OFF}$

Address of the data	Content of the data	Type of data	Read/write	Command word	Range of the data
0001 H	DO1	BIT	R		01
$1=\mathrm{ON}, 0=\mathrm{OFF}$					

http://www.ce-transducer.com
sales@ce-transducer.com

3rd Floor, building 1,Zaimao industrial park, Baoji road, Bantian, Longgang district, Shenzhen City, China Post code: 518049

SHEIZHEN SENSOR ELECTRONC TECHOLOGY CO, LTD.

0002 H	DO2	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$
0003 H	DO3	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$

B: The command "To read the alarm status of 3-way relay output"
Send command:

Address of the slave equipment	Function code	Address of the first register	Read the quantity of switch bits	CRC-L	CRC-H	
01 H	01 H	00 H	01 H	00 H	03 H	2 DH
	CBH					

Return data:

Address of the slave equipment	Function code	Data bytes count	Return data	CRC-L	CRC-H
01 H	01 H	01 H	05 H	91 H	$8 B H$

Description: 05 is converted into binary number 00000101, relay 1 is closed, relay 2 is released, relay 3 is closed, and high 5 bits are meaningless
3.6 The command "To read the input state of switch value (function code 02 , the standard MODBUS protocol read IO status of function code, MN1-case products do not have this feature)

A, Use s function code 02 H of the Modbus to access the contents of the following address table, thereintol $=0 \mathrm{~N}, 0=\mathrm{OFF}$

Address of the data	Content of the data	Type of data	Read/write	Command word	Range of the data	
0001 H	YX1	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	
0002 H	YX2	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	
0003 H	YX3	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	
000 EH	YX14	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	
000 FH	YX15	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	
0010 H	YX16	BIT	R	01	$1=\mathrm{ON}, 0=\mathrm{OFF}$	

B: To read the switch value input state from 1 to 16 channels of NO. 1 collector.
Send command:

Address of the slave equipment	Function code	Address of the first register	Read the quantity of switch bits	CRC-L	CRC-H		
01 H	02 H	00 H	01 H	00 H	10 H	28 H	06 H

Return data:

Address of the slave equipment	Function code	Data bytes count	Return data		CRC-L	CRC-H
01 H	02 H	02 H	06 H	05 H	7 AH	1 BH

Description: 06 H is converted into binary number 00000110 , switch value input of first 2-way and 3-way are closed, the first way is open, and the ways from 4 to 8 are off.
05 H is converted into binary number 00000110 , switch value input of first 9 -way and 11 -way are closed, he 10 - way is open, and the ways from 12 to 16 are off.
Table 1, setting the switch function code (MN1-case products do not have this feature)
(Switch pull to ON position represents 1and pulled to OFF position represents 0)
http://www.ce-transducer.com
sales@ce-transducer.com

3rd Floor, building 1,Zaimao industrial park, Baoji road, Bantian, Longgang district, Shenzhen City, China Post code: 518049

SW. 8	Baudrate setting	SW. 7	SW. 6	SW. 5	SW. 4	SW. 3	SW. 2	SW. 1	Address settings
0	9600	0	0	0	0	0	0	1	1
1	19200	0	0	0	0	0	1	0	2
		0	0	0	0	0	1	1	3
		0	0	0	0	1	0	0	4
							
		1	1	1	1	1	0	0	124
		1	1	1	1	1	0	1	125
		1	1	1	1	1	1	0	126
		1	1	1	1	1	1	1	127

Description: SW.X represents the corresponding switch bit of DIP switch SW.

